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Executive Summary 

In this project, we examined a key property of secure and dependable systems: 
robustness. Our research focused on developing techniques for analyzing as well as 
increasing the robustness of software due to unknown and anomalous events. The project 
was partitioned into three distinct and complementary threads of robustness research: 
intelligent test case generation, testing of the Win32 network stack for resilience to denial 
of service, and testing application software for robustness to failing operating system 
(OS) resources. 

The Random and Intelligent Data Design Library Environment (RIDDLE) was developed 
to support intelligent black-box testing of operating system and command-line utilities to 
unusual inputs. The work leveraged research in robustness testing of OS utilities 
previously performed on Unix systems, most notably by Barton Miller's research group at 
the University of Wisconsin. Robustness testing of OS utilities has previously found 
vulnerabilities in operating system software to unexpected, random input. Adopting this 
approach for the Win32 platform, we enhanced it further by intelligently combining valid 
input with anomalous input in order to unmask flaws that remain hidden to purely 
random testing. RIDDLE provides a test harness and library for automatically generating 
test data according to both random (generally invalid) and valid parameters. Our studies 
have shown empirically the benefit derived from combining intelligent test data 
generation with random test case generation for the purpose of testing robustness. 



Drawing on the experience of RIDDLE, we developed NetHose; a tool for testing the 
robustness of the Win32 network stack to anomalous data. The importance of this work is 
in developing structured approaches to testing critical portions of software that comprises 
the National Information Infrastructure (Nil). Since, the network stack of the Win32 
platform is a key component of the Nil, this approach is among the first to independently 
and systematically study the robustness of this software under anomalous input 
conditions. Fundamental problems in the design of network protocols such as TCP/IP 
can leave all platforms vulnerable. However, flaws, in the networking software can leave 
a given platform vulnerable to anomalous use of network services, or attack. NetHose is a 
network stack testing utility that is able to test the network stack of Win32 systems to 
unexpected data. This type of analysis effectively tests the operating system's ability to 
handle unusual network packets. The approach uses combinations of valid and invalid 
data in packet header fields in order to test the robustness of the network stack against 
unusual packet headers. Our studies revealed three types of robustness failures: kernel 
exceptions (colloquially known as blue screen of death), hard freezes, and system 
slowdowns. 

The third thread of research in this project was concerned with testing the robustness of 
Win32 applications under failing OS conditions. From our previous research with 
RIDDLE, we found that the three core libraries that compose the Win32 system more 
often than not throw memory access violation exceptions when presented unusual input. 
Thus, if application developers (particularly for mission-critical applications) do not 
account for these exceptions that the OS throws, then the application is likely to crash. 
The Failure Simulation Tool (FST) provides the ability to test Win32 executables 
(without requiring source code) for robustness to exceptions or errors returned by OS 
functions. FST instruments the interface between an application and the OS DLL in order 
to return errors or exceptions from an OS function. This is a far more efficient approach 
than black-box testing of an application in hopes of generating an OS exception. 
Experiments showed that Microsoft desktop applications had varying levels of non- 
robustness to exceptions and errors returned by OS functions. This type of non-robust 
behavior is typically expected from desktop applications. However, non-robustness to 
errors or exceptions returned from OS functions is typically not acceptable in a mission- 
critical application, such as a ship propulsion system. Thus, FST provides the ability to 
test mission-critical software for robustness to failing OS functions. In the final stage of 
this work, we used the instrumentation layer to provide protective wrappers for 
applications such that an exception can be caught by the wrapper and returned as an error 
when it is known a priori that the error is handled gracefully, while an exception is not. 

In summary, the work performed under this contract has significantly advanced the state- 
of-the-art in a key area or security and dependability of Win32 systems: software 
robustness. We've developed and delivered three distinct technologies for analyzing and 
improving the robustness of Win32 systems under unusual conditions associated either 
with malicious attack or misbehaving operating system functions. 



Dynamic Security Analysis of COTS Applications 
Contract No. F30602-97-C-0117 

Statement of Work Item 4.1.8.3 

Document all technical work accomplished and information generated during the performance of the 
project. This shall include both positive and negative results, all pertinent observations, and the nature of 
the problems addressed. The details of all technical work performed under this contract will be 
documented to permit full understanding of the methods and procedures used in creating the CVA 
prototype. 

1. Introduction 

This report documents all technical work accomplished and information generated during 
the performance of the project F30602-97-C-0117. Section 2 of this report, Subprojects, 
is divided into three sections that represent each of the primary areas that we have 
investigated. Each section contains rationale, experimental results, and conclusions for 
the work performed in that particular area. Section 3 is the Project Summary, and serves 
to tie together all of the research that we have performed under this contract. Section 4 is 
a cross-reference that serves to tie together this report and the requirements outlined in 
the Statement of Work that was specified in the contract. Section 5 contains a list of 
papers and presentations that have resulted from the work conducted on this project. 

2. Subprojects 

This section of the report details the three subprojects that make up the bulk of the work 
performed under this contract. Each subproject addresses a particular aspect of 
Component Vulnerability Analysis that is essential to solving research problems in this 
field. The first section, RIDDLE - The Random and Intelligent Data Design Library 
Environment, explores technologies that are important for the automated testing and 
security analysis of Commercial Off-The-Shelf (COTS) software components. RIDDLE 
introduces the development of the grammar generator, the creation of data generators, 
and the use of a flexible test framework that supports automated testing of COTS 
software components. Results of using RIDDLE to test software libraries, command-line 
utilities, and network daemons are presented. 

The next section, NetHose - The Network Stack Testing Utility, discusses a prototype 
tool that has been developed based on the same underlying concepts that came out of the 
work performed on RIDDLE. This utility addresses the increasingly large concern over 
Denial of Service (DoS) attacks that have become ubiquitous on the internet. NetHose 
provides a way to test the robustness of an operating system's network stack when faced 
with a deluge of valid and anomalous network traffic. 

The final section, The Failure Simulation Tool (FST), describes the development and use 
of a prototype that is used to examine the robustness of Windows NT applications under 
anomalous environmental conditions. The FST accomplishes this by providing an 
interface that allows the user to intercept function calls made from an application to any 



of its Dynamic Link Libraries. An intercepted function call can be caused to fail, 
simulating failures at the operating system level. 

2.1 RIDDLE - the Random and Intelligent Data Design Library Environment 

2.1.1 Motivation 

An increasingly large number of mission critical applications are relying on the 
robustness of Commercial Off The Shelf (COTS) software. The military, for one, uses 
commercially available architectures as the basis for 90% of its systems1. Many 
commercial products are not fully prepared for use in high assurance situations. The 
testing practices that ordinary commercial products undergo are not thorough enough to 
guarantee reliability, yet many of these products are being incorporated in critical 
systems. 

High assurance applications require software components that can function correctly even 
when faced with improper usage or stressful environmental conditions. The degree of 
tolerance to such situations is referred to as a component's robustness. Most commercial 
products are not targeted for high assurance applications. These products, which include 
most desktop applications and operating systems, have not been extensively tested for use 
in mission critical applications. Despite this fact, many of these products are used as 
essential components of critical systems. 

Given the use of COTS software components in critical systems, it is important that the 
robustness of these components be evaluated and improved. Studies, including Fuzz 2'3 

and Ballista , have examined using automated testing techniques to identify robustness 
failures5'6. Automated testing has the advantage of being low-cost and efficient, however 
its effectiveness depends largely on the data that is used as test input. The input to a 
component under test will determine which robustness failures (if any) will be 
discovered, and which will remain hidden. It is therefore essential that high assurance 
applications be tested with the most effective data possible. 

This study examines two different approaches to generating data to be used for automated 
robustness testing. The two approaches differ in terms of the type of data that is 
generated, and in the amount of time and effort required to develop the data generation 
routines. The first type of data generation that is discussed is called generic data 
generation, and the second is called intelligent data generation. We will compare and 
contrast both the preparation needed to perform each type of data generation, and the 
testing results that each yield. 



2.1.2. Related Work 

Two research projects have independently defined the prior art in assessing system 
software robustness: Fuzz2 and Ballista4. Both of these research projects have studied the 
robustness of Unix system software. Fuzz, a University of Wisconsin research project, 
studied the robustness of Unix system utilities. Ballista, a Carnegie Mellon University 
research project, studied the robustness of different Unix operating systems when 
handling exceptional conditions. The methodologies and results from these studies are 
briefly summarized here to establish the prior art in robustness testing. 

2.1.2.1 Fuzz 

One of the first noted research studies on the robustness of software was performed by a 
group out of the University of Wisconsin2. In 1990, the group published a study of the 
reliability of standard Unix utility program2. Using a random black-box testing tool called 
Fuzz, the group found that 25-33% of standard Unix utilities crashed or hung when tested 
using Fuzz. Five years later, the group repeated and extended the study of Unix utilities 
using the same basic techniques. The 1995 study found that in spite of advances in 
software, the failure rate of the systems they tested was still between 18 and 23%3. 

The study also noted differences in the failure rate between commercially developed 
software versus freely-distributed software such as GNU and Linux. Nine different 
operating system platforms were tested. Seven out of nine were commercial, while the 
other two were free software distributions. If one expected higher reliability out of 
commercial software development processes, then one would be in for a surprise in the 
results from the Fuzz study. The failure rates of system utilities on commercial versions 
of Unix ranged from 15-43%while the failure rates of GNU utilities were only 6%. 

Though the results from Fuzz analysis were quite revealing, the methodology employed 
by Fuzz is appealingly simple. Fuzz merely subjects a program to random input streams. 
The criteria for failure is very coarse, too. The program is considered to fail if it dumps a 
core file or if it hangs. After submitting a program to random input, Fuzz checks for the 
presence of a core file or a hung process. If a core file is detected, a "crash" entry is 
recorded in a log file. In this fashion, the group was able to study the robustness of Unix 
utilities to unexpected input. 

The causes of crashes were investigated by Fuzz researchers analyzing source code 
provided by the commercial vendors in addition to the source code available through 
freely distributed software. Errors that programmers made include pointer/array errors, 
using dangerous input functions, errors in signed characters, and checking for the end of 
file when reading input. For example, incrementing the pointer past the end of an array is 
a common error made by many programmers. Also, the use of dangerous input functions 
such as the gets() C function can result in program crashes. More insidious manipulation 
of dangerous input functions can permit "stack smashing" attacks that allow the 
execution of arbitrary program code embedded in user input. Another example of a 
programmer error is assuming that the end-of-file character will always immediately 



follow a newline character. User input may not necessarily follow this format. Though 
the Fuzz study did not investigate the vulnerability of programs to buffer overrun attacks, 
some of the gaps in robustness as measured by the Fuzz study may be exploitable in this 
manner for security violations. 

2.1.2.2 Ballista 

Ballista is a research project out of Carnegie Mellon University that is attempting to 
harden COTS software by analyzing its robustness gaps. Ballista automatically tests 
operating system software using combinations of both valid and invalid input. By 
determining where gaps in robustness exist, one goal of the Ballista project is to 
automatically generate software " wrappers" to filter dangerous inputs before reaching 
vulnerable COTS operating system (OS) software. 

A robustness gap is defined as the failure of the OS to handle exceptional conditions4. 
Because real-world software is often rife with bugs that can generate unexpected or 
exception conditions, the goal of Ballista research is to assess the robustness of 
commercial OSs to handle exception conditions that may be generated by application 
software. 

Unlike the Fuzz research, Ballista focused on assessing the robustness of operating 
system calls made frequently from desktop software. Empirical results from Ballista 
research found that read(), write(), open(),close(),fstat(),stat(), and select() were most 
often called4. Rather than generating inputs to the application software that made these 
system calls, the Ballista research generated test harnesses for these system calls that 
allowed generation of both valid and invalid input. 

Based on the results from testing, a robustness gap severity scale was formulated. The 
scale categorized failures into the following categories: Crash, Restart, Abort, Silent, and 
Hindering (CRASH). A failure is defined by the error or success return code, abnormal 
terminations, or loss of program control. The categorization of failures is more fine- 
grained than the Fuzz research that categorized failures as either crashes or hangs. 

The Ballista robustness testing methodology was applied to five different commercial 
Unixes: Mach, HP-UX, QNX, LynxOS, and FTX OS that are often used in high- 
availability, and some-times real-time systems. The results from testing each of the 
commercial OSs are categorized by the CRASH severity scale and a comparison of the 
OSs are found in4. 

In summary, the Ballista research has been able to demonstrate robustness gaps in several 
commercial OSs that are used in mission-critical systems by employing black-box 
testing. These robustness gaps, in turn, can be used by software developers to improve 
the software. On the other hand, failing improvement in the software, software crackers 
may attempt to exploit vulnerabilities in the OS. 



The research on Unix system software presented in this section serves as the basis for the 
robustness testing of the NT software system described herein. The goal of the work 
presented here is to assess the robustness of application software and system utilities that 
are commonly used on the NT operating system. By first identifying potential robustness 
gaps, this work will pave the road to isolating potential vulnerabilities in the Windows 
NT system. 

2.1.3. Input Data Generation 

Both the Fuzz project and the Ballista project use automatically generated test data to 
perform automated robustness testing. The development of the data generators used by 
the researchers working on the Ballista project clearly required more time than did the 
development of the data generators used by researchers on the Fuzz project. This is 
because the Ballista team required a different data generator for each parameter type that 
they encountered, while the Fuzz team needed only one data generator for all of their 
experimentation. The data used for command line testing in the Fuzz project consisted 
simply of randomly generated strings of characters. These randomly generated strings 
were used to test all of the UNIX utilities, regardless of what the utility expected as its 
command line argument(s). Each utility, therefore, was treated in a generic manner, and 
only one data generator was needed. We refer to test data that is not dependent on the 
specific component being tested as generic data. 

The Ballista team took a different approach to data generation. They tested UNIX 
operating system function calls, and generated function arguments based on the type 
declared in the function's specification. This approach required that a new data generator 
be written for each new type that is encountered in a function's specification. Although 
the number of elements in the set of data generators needed to test a group of functions is 
less than or equal to the number of functions, this may still require a large number of data 
generators. We refer to the practice of generating data that is specific to the component 
currently under test as intelligent data generation. 

2.1.3.1 Generic Data 

The generation of generic test data is not dependent on the software component being 
tested. During generic testing, the same test data generator is used to test all components. 
This concept can be made clearer through an example. When testing command line 
utilities, generic data consists of randomly generated strings. There are three attributes 
that can be altered during generic command line utility testing. They are string length, 
character set, and the number of strings passed as parameters. The same data generators 
are used to test each command line utility. A utility that expects a file name as a 
parameter will be tested the same way as a utility that expects the name of a printer as an 
argument. The test data that the data generator produces is independent of the utility 
being tested. 



2.1.3.2 Intelligent Data 

Intelligent test data differs from generic test data because it is tailored specifically to the 
component under test. The example above can be extended to show the differences 
between generic and intelligent data. Assume that the current command line utility being 
tested takes two parameters: a printer name, and a file name. This would require the use 
of two intelligent data generators (one for generating printer names, the other for 
generating file names). The intelligent file name generator will produce strings that 
correspond to existing files. Additionally it will produce other strings that test known 
boundary conditions associated with file names. For example, on Windows NT there is a 
limit of 255 characters as the length of a file name. The intelligent data generator will be 
designed to produce strings that explore this boundary condition. Furthermore, the 
generator might produce strings that correspond to files with different attributes (read 
only, system, or hidden), or even directory names. The intelligent printer name generator 
would produce input data that explores similar aspects of a printer name. 

The purpose of using intelligent data generators is to take advantage of our knowledge of 
what type of input the component under test is expecting. We use this knowledge to 
produce data that we believe will exercise the component in ways that generic data 
cannot. Intelligent testing involves combining the use of intelligent data generators with 
the use of generic data generators. The reason that tests that combine intelligent data 
with generic data will exercise more of a component's functionality is because the 
component may be able to screen out tests that use purely generic data. This can be 
explained by continuing the example of the command line utility that takes a printer name 
and a file name as its parameters. If the first thing that this utility did was to exit 
immediately if the specified printer did not exist, then testing with generic data would 
never cause the utility to execute any further. This would hide any potential flaws that 
might be found through continued execution of the utility. 

2.1.4. The Experiment 

In this experiment, we perform robustness testing of Windows NT software components. 
The two types of components that we test are command line utilities, and Win32 API 
functions. Both types of components are tested using both generic and intelligent testing 
techniques. 

2.1.4.1 Component Robustness 

The IEEE Standard Glossary of Software Engineering Terminology defines robustness as 
"The degree to which a system or component can function correctly in the presence of 
invalid inputs or stressful environmental conditions." (IEEE Std 610.12.1990) Applying 
this definition of robustness to the two classes of components that we are testing allows 
us to make two claims. 



1. Neither an application, nor a function, should hang, crash, or disrupt the system 
unless this is a specified behavior. 

2. A function that throws an exception that is not documented as being capable of 
throwing is committing a non-robust action. 

The first statement is a fairly straightforward application of the definition of robustness. 
The second statement requires some more explanation. Exceptions are messages used 
within a program to indicate that an event outside of the normal flow of execution has 
occurred. Programmers often make use of exceptions to perform error-handling routines. 
The danger of using exceptions arises when they are not properly handled. If a function 
throws an exception, and the application does not catch this exception, then the 
application will crash. In order to catch an exception, a programmer must put exception- 
handling code around areas that he or she knows could throw an exception. This will 
only be done if the programmer knows that it is possible that a function can throw an 
exception. Because uncaught exceptions are dangerous, it is important that a function 
only throws exceptions that are documented. 

A function that throws an exception when it is not specified that it can throw an exception 
is committing a non-robust action. The function does not necessarily contain a bug, but it 
is not performing as robustly as it should. Robustness failures like this can easily lead to 
non-robust applications. 

2.1.4.2 Test Framework 

To perform our automated robustness testing we began by developing a simple test 
framework (Figure 1). The framework consists of four important components: the 
configuration file, the execution manager, the test child, and the data generation library. 

Execution Manager              /^ Qetimäon> 
\         Library        j 

Test Executor X.      1 r 
Test Child 

Test Monitor 

^\                    / 

*r 

Figure 1: Testing Framework 



The configuration file specifies what is being tested, and where the test data will come 
from. It is a flat text file that is read in one line at a time. Each line includes the name of 
the component to be tested, and the names of the data generators that should be used to 
supply the input for each parameter. Each parameter that is required by the component 
under test is specified individually. This is an example of what a line of the configuration 
file might look like during intelligent testing. In this example, the utility "print" expects 
the name of a printer followed by the name of a file. 

print SPRINTER $FILENAME 

Here is what a line from the generic testing configuration file might look like: 

print SGENERIC SGENERIC 

The data generation library contains all of the routines needed for generating both generic 
and intelligent data (these are called data generators). Each data generator generates a 
fixed number of pieces of data. The number of data elements that a data generator will 
produce can be returned by the data generator if it is queried. The data element that a 
data generator returns can be controlled by the parameters that are passed to it. 

The test child is a process that is executed as an individual test. In the case of the 
command line utilities, the utility itself constitutes the test child. When testing the Win32 
API functions, however, the test child is a special process that will perform one execution 
of the function under test. This allows each run of a function test to begin in a newly 
created address space. This reduces the chance that a buildup of system state will affect a 
test. 

The execution manager is the heart of the framework. It is responsible for reading the 
configuration file, executing a test child, and monitoring the results of the test. After 
reading a line from the configuration file, the execution manager uses functions in the 
data generation library to determine how many tests will be run for a component. This 
number represents all possible combinations of the data produced by the specified data 
generators. For example, the line from the intelligent testing configuration file mentioned 
above specifies one file name generator, and one printer name generator. If the 
SFILENAME data generator produces 10 different values, and the SPRINTER data 
generator produces 5 values, then the execution manager would know that it has to run 50 
(10x5) test cases. The execution manager then prepares the test child so that it will 
execute the correct test. Finally the execution manager executes the test child. 

The test monitor is the part of the execution manager that gathers and analyzes the results 
of an individual test case. The test monitor is able to determine the conditions under 
which the test child has terminated. Some possible ends to a test case include the test 
child exiting normally, the test child not exiting (hanging), the test child exiting due to an 
uncaught exception (program crash), and the test child exiting due to a system crash. In 
the event of a system crash, after restarting the computer the testing framework is able to 
continue testing at the point that it left off. The results that the test monitor gathers are 
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used to produce a report that details any robustness failures that were detected during 
testing. 

This framework enables us to configure a set of tests, and then execute them and gather 
the results automatically. The results are stored as a report that can easily be compared to 
other reports that the utility has generated. 

The complete functionality of the test framework is most easily managed through its 
Graphical User Interface. The GUI can be used to configure and automatically execute a 
set of test cases, as well as to produce results reports. Status bars, including those that 
can be seen in Figure 2, give the tester an idea of how many tests have been run, and how 
many are remaining. The results of the testing are computed on the fly, and can be 
viewed in the results window even before all tests have completed. The reports manager, 
shown in Figure 3 (next page), is used to analyze the results of more than one experiment. 
It enables the user to select any number of previously generated reports and combine 
them into a comprehensive report suitable for experimental results comparisons. 
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Figure 2: Win32 API Function Testing GUI - Test configuration screen 
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2.1.4.3 Win32 API Function Testing 

The Win32 API is a set of functions that is standard across the Windows NT, Windows 
95/98, Win32s, and Windows CE platforms (although not all functions are fully 
implemented on each of these platforms). These functions are located in Dynamic Link 
Libraries (DLLs), and represent a programmer's interface to the Windows operating 
system. For this experiment, we chose to concentrate on three of the most important 
Windows DLLs: USER32.DLL, KERNEL32.DLL, and GDI32.DLL. The USER32 DLL 
contains functions for performing user-interface tasks such as window creation and 
message sending, KERNEL32 consists of functions for managing memory, processes, 
and threads, and GDI32 contains functions for drawing graphical images and displaying 
text7. 

2.1.4.3.1 Generic Win32 API Testing 

The generic data generators that we used for testing the Win32 API functions were all 
integer based. This was done because all possible types can be represented through 
integers. For example, the char * type (a pointer to an array of characters) is simply an 
integer value that tells where in memory the beginning of the character array is located. 
The type float is a 32 bit value (just like an integer), and differs only in its interpretation 
by an application. Since the premise behind generic data generation is that there is no 
distinction made between argument types, the generic data generator used during the 
Win32 API testing generates only integers. 
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The generic testing that we performed on the Win32 API was done in three stages 
(referred to as Generic 0, Generic 1, and Generic 2). These stages are distinguished by 
the sets of integers that we used. Each set of integers is a superset of the previous set. 
The first set of integers that we used consisted only of { 0 }. The second consisted of {- 
1, 0,1 }, and the third contained {-231, -215, -1, 0,1, 215 -1, 231 -1 }. A test consisted of 
executing a function using all combinations of the numbers in these sets. For example, 
during the first stage of testing we called all of the functions and passed the value zero as 
each of the required parameters (resulting in only one test case per function). The second 
stage of testing consisted of running 3X test cases, where x is the number of parameters 
that the function expects. The final stage of testing required 7X test cases. Due to the 
time intensive nature of the testing that we are conducting, we limited our experiment to 
test only functions that contained four or fewer parameters (a maximum of 7 = 2401 
tests per function during generic testing). 

2.1.4.3.2 Intelligent Win32 API Testing 

Intelligent testing of the Win32 API involved the development of over 40 distinct data 
generators. Each data generator produced data that is specific to a particular parameter 
type. One data generator was often capable of producing multiple pieces of data related 
to the data type for which it was written. Furthermore, each intelligent data generator 
also produced all of the data items output by the third generic data generator. An 
example of an intelligent data generator is the data generator that produces character 
strings. In addition to the data produced by the third generic data generator, this data 
generator produces a number of valid strings of various lengths and the null string. Other 
examples of Win32 API intelligent data generators are those that produce handles to files, 
handles to various system objects (i.e., module handles), and certain data structures. 

2.1.4.3.3 Win32 API Testing Results 

The results of both the generic and intelligent Win32 API experimentation are 
summarized in Figure 4. The bars represent the percentage of functions that 
demonstrated robustness failures. The robustness failures that are charted are almost 
entirely due to exceptions that the functions are throwing. Any one of these exceptions 
could cause an application to crash if they are not caught. The most common exception 
that we found (representative of an estimated 99% of all exceptions) is an 
ACCESSVIOLATION. This is a type of memory exception that is caused by a program 
referencing a portion of memory that it has not been allocated. An example of this would 
be trying to write to a null pointer. "Access violations" frequently occur when an 
incorrect value is passed to a function that expects some sort of pointer. The number of 
functions that throw access violations when they are passed all zeros underscores this 
point. Keep in mind that the undocumented throwing of an exception does not 
necessarily indicate that a function contains a bug, however this is often not the most 
robust course of action that the function could take. 
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Figure 4: Win32 Function Testing Results 

There were 321 USER32 functions tested, 307 KERNEL32 functions tested, and 231 
GDI32 functions tested. In the analysis that we present here, we focus on the number of 
functions in each DLL that demonstrated robustness failures. There are a couple of 
reasons that we chose to concentrate on the number of functions that had failures, not the 
number of failures per function. One reason for this is that a function only has to suffer a 
robustness failure once to potentially harm a mission critical system. If it can be shown 
that a function is capable of failing in at least one circumstance, then the robustness of 
this function is called into question. 

Another reason for focusing on the percentage of functions that failed, not the percentage 
of failures per function, is that the number of tests that are run for each function is 
subjective. This subjectivity arises from the development of the data generators. There is 
no practical way to write a data generator (generic or intelligent) that will produce an 
exhaustive set of tests. Look, for example, at the intelligent data generator that produces 
strings. We use this generator to produce a number of strings of varying lengths. There 
is, however, a near infinite number of string lengths and character patterns that we could 
produce. Instead of attempting to exhaustively generate all of these possibilities (an 
intractable task), we instead select a small sampling of strings that we hope will test a 
function in different ways. 

The way that this subjectivity could affect our data gathering is if we examine the number 
or percentage of failures per function. We would not even be able to give an accurate 
percentage of failures on a per function basis. If function X fails 50% of the time when 
tested with the data used during the third round of generic testing, we could easily add or 
remove data values to alter this percentage. What is most important to us is not the 
number of times that we can cause a function to fail, but whether or not a function failed 
during our testing. 
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Each progressive level of testing, from Generic 0 to intelligent, is a superset of the 
previous testing level. Generic testing accounted for over 60% of the exceptions found in 
each of the three DLLs tested. Notice that the percentage of functions that fails rises 
sharply between the first and second rounds of generic testing, and then again between 
the third round of generic testing and the round of intelligent testing. These results 
indicate two things to us. First, they show that despite its simplicity, generic testing is a 
worthwhile activity. Second, the results indicate that intelligent testing is a more 
comprehensive, and thus necessary part of automated robustness testing. 

The process of setting up the generic tests that we conducted on the Win32 API functions 
was a fairly inexpensive task. The generic data generators that we used were simple to 
design and implement. Additionally, it appears that further expanding the sets of integers 
used during generic testing will not bring many new results. As the set of integers was 
changed from three elements to seven elements, the number of additional functions that 
failed was zero for KERNEL32 and GDI32, and only two for USER32. The generic data 
generation approach to automated testing could certainly be valuable to a tester that 
simply wanted to take a first step towards evaluating the robustness of a set of functions. 

The significant increase between the number of functions found to exhibit robustness 
failures during generic testing, and the number of functions found to fail during 
intelligent testing underscores the importance of intelligent software testing. This data 
supports the claim that as the level of intelligence that is used during testing increases, so 
does the number of problems discovered. For critical systems, this indicates that a 
significant amount of time and effort needs to be put into software testing. 

As a final note, we found a number of serious operating system robustness failures during 
the testing of GDI32 and KERNEL32. Each of these DLLs contains a few functions that 
were capable of crashing the operating system. All of these operating system crashes 
occurred during intelligent testing. These OS crashes are significant because they 
represent robustness failures that could not be trapped by an application in any way. 
They are dangerous because they could either occur accidentally during normal system 
use, or could be caused intentionally by a malicious user (as in a Denial Of Service 
attack). 

2.1.4.4 Win32 Command Line Utility Testing 

For the second part to this experiment, we performed automated robustness testing of a 
number of Windows NT command line utilities. The primary difference between this 
experiment and the testing of the Win32 API functions is that we are now testing 
complete applications, not operating system functions. The utilities that we tested 
consisted of both a group of programs that are native to the Windows NT operating 
system, and a group of programs that were written by Cygnus for use on the Windows 
NT platform. Many of the command line utilities that we tested are analogous to the 
UNIX utilities tested by the researchers on the Fuzz project. 
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2.1.4.4.1 Generic Command Line Utility Testing 

The generic data generators that we used for testing the command line utilities were all 
string based. The parameters that command line utilities accept are always read from the 
command line as strings. Therefore, if a command line utility expects an integer as a 
parameter, it reads these parameters as a string (e.g., "10") and then converts it to the type 
that it requires. 

There is another fundamental difference between the Win32 API function testing and the 
command line utility testing that we need to address. All of the functions that we tested 
accepted a fixed number of parameters. Many command line utilities will accept a 
varying number of parameters. Parameters are delimited by blank spaces. Instead of 
only judging whether or not a command line utility exhibited any robustness failures, we 
chose to distinguish between test cases that involved different numbers of parameters. 
Due to resource considerations, we limited the number of parameters that we would test 
to four. 

The following is an example of what the configuration file for the command line utility 
"comp" looks like: 

comp $GENERIC 
comp SGENERIC $GENERIC 
comp $GENERIC $GENERIC SGENERIC 
comp $GENERIC $GENERIC $GENERIC SGENERIC 

We refer to each of these lines as a template. Each utility is tested using 1, 2, 3, and 4 
parameters, for a total of four templates. The generic data generator for the command line 
utility testing produced strings of varying lengths and character sets. The character sets 
that were used included alphanumeric, printable ASCII, and all ASCII except the null 
character. The null character (ASCII value 0) was avoided because it could be 
interpreted as the end of a line. Additionally, none of these strings contained spaces, so 
they should not be misinterpreted as representing more than one parameter. 

2.1.4.4.2 Intelligent Command Line Utility Testing 

The intelligent data that was used as parameters to the command line utilities was based 
on syntactic and semantic information gathered from documentation for each utility. 
Although the data generators produce only strings, the strings that they produce have 
semantic meaning. For example, an intelligent data generator that produces file names 
chooses names of files that actually exist. There exist other data generators that produce 
strings corresponding to integers, directory names, printer names, etc. In addition to 
using these intelligent pieces of data, intelligent testing involved running test cases that 
combined intelligent data with generic data. 
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2.1.4.4.3 Command Line Utility Testing Results 

Tables 1 and 2 summarize the results of the command line utility testing. The data 
represents the number of templates that exhibited robustness failures (out of a possible 
four). The robustness failures charted here are due to the application abnormally 
terminating due to an uncaught exception that was thrown within the application. As 
stated earlier, an exception, such as those examined in the Win32 API function testing 
portion of this experiment, can cause an application to crash if it is not handled properly. 

Robustness Failures Discovered in Microsoft NT Utilities 

Generic Intelligent 
findstr 3/4 4/4 
xcopy 3/4 4/4 
expand 2/4 3/4 
comp 0/4 1/4 
ftp 0/4 1/4 
ping 0/4 0/4 

Table 1: Results from native Windows NT command line utility testing 

Robustness Failures Discovered in Cygnus GNU Win32 Utilities 

Generic Intelligent 
diff 2/4 3/4 
gunzip 2/4 2/4 
Is 2/4 3/4 
cp 2/4 3/4 
od 2/4 3/4 
grep 2/4 2/4 

Table 2: Results from testing Cygnus Windows NT command line utilities 

The experimental results that we have gathered during the command line utility testing 
appear to support the conclusions that we came to after analyzing the Win32 API 
function testing. Simple generic testing was able to uncover robustness failures in a 
significant number of the utilities that we tested (9 out of 12). Intelligent testing was able 
to uncover two additional utilities that contained robustness failures. 

Intelligent testing also proved to be better than generic testing at discovering more 
robustness failures for each utility. In all but three of the twelve utilities tested, 
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intelligent testing resulted in more failed templates than generic testing. Only one of the 
tested utilities did not demonstrate any robustness failures. 
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Figure 5: Screen capture of a robustness failure discovered in the native Windows NT 
command line utility comp. 

Figure 5 contains a screen capture of a robustness failure that we discovered in the native 
Windows NT utility comp. This particular failure occurs only when the first parameter is 
a valid file name and the second parameter is a buffer of approximately 250 characters. 
This is an example of a robustness failure that could not be detected using only generic 
testing because it only appears when the first parameter is the name of an existing file. 
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Figure 6. 

A further breakdown of these experimental results shows that the vast majority of the 
exceptions occurred when the character set being used for string generation was in the 
range (1,255) (excluding the NULL character). This is shown in Figure 6, which depicts 
the percent of test cases that resulted in exceptions. This pattern is most likely due to the 
program's interpretation of special characters. The number of exceptions decreases 
dramatically when the character set is altered to include the null character, or when it 
consists only of printable characters in the range (33,127). The null character may be 
interpreted as the termination character of a string, effectively limiting the length of the 
input. This would explain why there are fewer unhandled exceptions when this character 
is used in light of the correlation between length and exceptions (see Figure 7). Another 
possibility is that if the null character is interpreted as either the end of a string or the end 
of the parameter list, then the parameters may no longer constitute a valid use of the 
application and the utility may immediately reject the test case. 

Clearly, these command-line utilities are most vulnerable to input that is sampled from 
the character set range (1,255). This set includes every printable and non-printable 
character except for the NULL character. Even very long length input in the alphabetical 
and printable set resulted in few exceptions. Instead, it is the combination of very long 
length with nearly the entire range of the character set (including non-printable 
characters) that resulted in the most unhandled exceptions. The most significant trend in 
the data collected from these tests is the increase in unhandled exceptions as the length of 
string increases as illustrated in Figure 7. 

The graph of the exception ratios show that as the length of input is increased from 8 to 
4096 bytes, the number of exceptions rises dramatically indicating a failure to handle 
anomalous input within proper input grammar. Significantly fewer exceptions occurred 
when the length of the string used was either 8 or 250 characters. Because the exception 
that occurred most often was a memory access violation, the cause is most likely an over- 
written buffer that placed an illegal pointer on the program stack. In other words, the 
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instruction pointer that was overwritten with the long input probably points to a region of 
the memory that is inaccessible for the program, or it may point to data that is not a valid 
instruction opcode. This result points to potential vulnerabilities in these utilities to buffer 
overrun attacks. Buffer overrun attacks are one of the most significant security-related 
flaws that are most often exploited in practice8'9. The Fuzz study also pointed out the 
relative vulnerability of programs to unconstrained input3. However, the assertion that 
these programs are vulnerable to buffer overrun attacks has not been investigated in this 
study. 

Exceptions Generated During Command Line Utility Testing 
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Figure 7. 

2.1.4.5 The Grammar Generator 

The grammar generator takes a different approach to producing valid and anomalous data 
than the techniques presented above. Specifically, the grammar generator addresses the 
fact that the subject being tested may not take a fixed number of inputs. The grammar 
generator requires that the user is able to specify the inputs to the test subject, and then it 
can produce streams of data that conform to these specifications. 

2.1.4.5.1 Grammar Generator Theory 

The ability to generate intelligent input is essential for the type of stress testing necessary 
for robustness assessment. The simplest form of testing involves generating random 
streams of data that are used by the program being tested; this was done in the Fuzz 
project. While random input generation can test the ability of a program to handle non- 
conforming input, it typically will not exercise much of a program's functionality. Testing 
applications with syntactically correct data will result in more thorough testing ofthat 
application than testing with purely random data. For example, many applications that 

20 



take command line arguments will immediately terminate if they do not receive the 
correct number of parameters, or if they receive an invalid flag. In this situation, random 
testing will not test any further into the program than this initial check. 

On the other hand, syntactically correct arguments (or input parameters) will result in 
more of the application being tested. In order to exercise more of a program's 
functionality and to test more of the function's response to anomalous input, we have 
supplemented RIDDLE with a grammar-based input generation component. With the 
creation of a grammar-based input generation component, RIDDLE can test software 
with syntactically correct data that contains unexpected, anomalous input. The anomalous 
input itself will be generated through function calls to the data generation library. 

The grammar generator takes a grammar specification as input, and produces random, yet 
syntactically correct, strings of data by employing functions from the data generation 
library. The goal of this approach is to produce input that is closer to being valid than 
that produced through the template method that has been discussed above. 

The data generation library can be used to generate data with a variety of levels of 
intelligence. When testing an application that takes a file name as a parameter, the data 
generation library can be used to produce a number of substitutions for this parameter. In 
the case of a file name, the data generation library can produce the name of an existing 
file, a valid file name that doesn't exist, an invalid file name, the name of a file with 
specific permissions set, an extremely long file name, or otherwise. Each of these 
possibilities results in a different test case that may exercise the application being tested 
in a new way. 

2.1.4.5.2 Architecture 

The grammar specification is defined in two parts. The first part is a definition of the 
grammar written in a format similar to Backus-Naur Form (BNF). The second part is a 
file that contains definitions of all of the tokens used in the grammar. RIDDLE begins by 
parsing the grammar definition and checking that it is syntactically correct. Next, 
RIDDLE begins the process of generating data based on the grammar that it has read. 
The data that RIDDLE generates relies on the terminal definitions that have been 
supplied in the token definition file and the functions called from the data generation 
library. 

For each program being tested, the grammar definition must be created. The definition 
declares the format for the input that is syntactically correct for exercising the program 
under test. Each production, or rule, consists of a left-hand side and a right-hand side, 
separated by a colon. The left-hand side identifies a single non-terminal. The right-hand 
side of the production identifies a set of non-terminals and tokens that the non-terminal 
on the left-hand side can reduce to. A single non-terminal could have a number of choices 
of reductions. In this case, each reduction is separated by the symbol "|"- Tokens are 
productions that reduce only to a single terminal (they are therefore only one step away 
from being terminals themselves). In RIDDLE's case, terminals always reduce to a 
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string. The terminal that a token reduces to is specified separately from the grammar 
definition in the token definition file. 

The following simple grammar is equivalent to the regular expression (a)*b, or any 
number of a's followed by a single b (i.e.}, b, ab, aab, etc). 

Grammar Definition 

START 
START: 

1 
B 
A 

Token Definitions 

A: "a" 
B: "b" 

RIDDLE always begins with the first production rule that is given. All possible 
syntactically correct sentences must begin from this production. In this example, the 
production that defines the non-terminal START is the starting production. When 
reducing the non-terminal START, the data generator has a choice of picking either the 
production rule that results in token B (in the example above), or the production rule that 
results in the token A followed by the non-terminal START. The data generation 
component uses a repeatable random number generator to choose between the production 
choices that it faces. Additionally, RIDDLE provides a means of weighting the choice of 
production rules. This probability is specified by adding a weight to the end of a 
production. The START production could be written as: 

START: B 1 
I A  START     3 

This grammar definition indicates that the chance of non-terminal START reducing to A 
START is 3 times more likely then it reducing to B. Or in other words, there is a 75% 
chance that it will reduce to A START and a 25% chance that it will reduce to B. 

When the grammar-based data generation component is called upon to produce 
syntactically correct data it begins with the starting production. It then chooses 
productions at random (taking into account the probabilities that were added) until all of 
the non-terminals have been reduced to tokens. For example, the grammar above might 
produce the string of tokens AAAAB. The final step of the process is to reduce the 
tokens to their values. In our example, A reduces to the string "a" and B reduces to 
string "b", giving us the string "aaaab". The data that is produced will be syntactically 
correct with respect to the grammar that was used to create it. 

RIDDLE allows the user to specify that a token reduces to either a string literal, or a 
function that returns a string literal. In the previous example, token B reduced to the 
string literal "b". The user could specify that token B reduce to the function call 
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RandomFileName (). This function could return a string that would be used in place 
of the token B (e.g., the choices of file names that were mentioned earlier). This is how 
RIDDLE is able to generate data that will serve as anomalous program input. The 
functions that can be used in the reduction of a token make up the data generation library. 
This library will contain functions that reduce to numerous user-specified strings that can 
be used for testing purposes. 

RIDDLE is designed to test two types of applications: those that take input from the 
command line, and those that take streams of data as input. The former class of 
applications includes many commonly used operating system utilities. Examples of such 
Unix utilities include the cp, Is, man, and ps commands. Windows NT examples 
include mode, tree, subst, and format. Applications that rely on streams of data 
include Web servers (httpd), ftp servers, ftp clients, lpr, and grep. 

A simplified example of testing the UNIX utility cp can be demonstrated. This grammar 
definition only accounts for a small subset of the command's functionality, but it is useful 
for illustrative purposes. 

Grammar Definition 

START:             SP 
I             SP 
I              SP 

LOW_F             START 
LOW_P             START 
FILE_NAME   FILE_NAME 

Token Definition 

LOW   F:              "-f" 
LOW_P:              "-p" 
FILE  NAME:   Genera 
SP:                     "  " 

teFileName() 

This grammar specification will provide for the production of an input string that consists 
of any number of-f s and -p's followed by two strings produced by the 
GenerateFileName() function. The input strings that are produced could then be used in 
test cases. The following are some test cases that RIDDLE might produce: 

cp -p oaisud aoisudf 
cp -p -f -p -p <existing file> <existing directory> 
cp -f -p <open file> <extremely long buffer of characters> 

These test cases are syntactically correct usages of the cp command, combined with 
anomalous data. If the anomalous data that is supplied by the data generation library 
results in undesirable application failure, then a weakness in the robustness of the 
application has been detected. 
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2.1.4.5.3 Command-Line Utility Testing with the Grammar Generator 

As discussed, the grammar generator is useful for producing input that can be used to test 
components that accept an arbitrary number of inputs. We used the grammar generator to 
produce input strings to test command-line utilities and network daemons. The first step 
to this process was to produce grammar definitions and token definitions for the 
components to be tested. The grammar definitions that were used to test command-line 
utilities were developed from the usage documentation for these utilities. The grammar 
definitions for the network daemons that we tested were available as BNF definitions 
from developer documentation that is publicly available. 

We ran tests on the same set of Microsoft and GNU utilities that we tested using the 
template approach (section 2.1.4.4). The number of test cases that can be produced for 
each utility using the grammar generator is completely arbitrary. The length of the input 
strings that are generated is also arbitrary. Because the nature of this testing is so 
subjective, we simply chose to run a number of test cases that fell within the time 
constraints that we had set for this testing. 

MS 
Utilities 

Exceptions 
Generated 

Findstr Yes 
Xcopy Yes 
Expand Yes 
Comp Yes 
ftp Yes 
Ping No 

Table 3. 

GNU 
Utilities 

Exceptions 
Generated 

Diff Yes 
Gunzip Yes 
Ls Yes 
Cp Yes 
Od Yes 
Grep Yes 

Table 4. 

Tables 3 and 4 show the results of the tests that we ran on the command-line utilities. 
This table indicates whether or not the utility being tested threw any exceptions during 
the test period. It would not be scientifically valid to calculate the percent of failures 
during these tests because the number of test cases is arbitrary. The results of the tests 
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that were produced using the grammar generator match those gathered through the 
template testing discussed in section 2.1.4.4. The same utilities that displayed failures 
during the intelligent template testing failed during testing with the grammar generator. 
This indicates that the template testing that we performed was able to achieve comparable 
results to the grammar generator testing, with significantly less work required. To 
strengthen this claim, we would need to considerably extend the range of utilities that 
were tested using each approach. Due to the amount of effort required for this 
experimentation, we have not performed such validation at this time. 

2.1.4.5.4 Network Daemon Testing with the Grammar Generator 

The network daemons that we tested were web servers and ftp servers. The first step 
towards testing these applications was to modify RIDDLE so that it could transmit data 
across a network. The watchdog process was removed, because the application being 
tested was no longer local to the machine running RIDDLE. Instead of putting a 
watchdog process on the remote machine, RIDDLE looked for application failures by 
periodically verifying that the daemon being tested was still responding correctly. With 
these modifications in place, RIDDLE was now able to perform the remote testing of 
network daemons. 

For the web server testing, we worked from a BNF grammar that was obtained from a 
public distribution. The grammar files that we used for web server testing were 
significantly more complicated than those used for the testing of command-line utilities. 
We then wrote a token definition file that contained the data generators that we were 
interested in using. 

The web servers that were tested are Microsoft's Internet Information Server 3.0 (IIS) 
and the APACHE Web Server. Although we subjected these servers to extensive testing, 
we were unable to find any robustness problems with either server. This is likely due to 
years of bug fixes and application hardening that these applications have gone through. 
A robustness flaw in a web server would be a major problem for any company that relies 
on the availability of their web server. When such flaws are found, they are often 
exploited as Denial of Service attacks by malicious users in the computer community. 
Developers of web servers must remain diligent in fixing any robustness flaws that are 
discovered in their product. 

The grammar definition files that were used for the testing of the file transfer protocol 
servers (FTP servers) were also based on publicly available specifications. The FTP 
servers that were tested are Microsoft's IIS 3.0 and Solaris' f tpd. The testing of these 
servers did not result in any robustness failures. Once again, these are essential 
applications that are generally accessible to anyone that is connected to the internet. 
Years of exposure to network attacks have resulted in robust applications that are good at 
handling anomalous network traffic. 
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2.1.5. Conclusions 

The experimental results of both the Win32 API function testing and the Windows NT 
command line utility testing demonstrate the usefulness of performing automated 
robustness tests with generic data, as well as the importance of using intelligent 
robustness testing techniques. Despite its simplicity, generic testing has proven to 
provide valuable results in both halves of this experiment. Automated generic testing is 
an inexpensive yet useful testing technique. 

Intelligent testing uncovered more robustness failures for both the automated Win32 API 
function robustness testing, and the automated Windows NT command line utility testing. 
These results verify that more intelligent testing techniques uncover more robustness 
failures. Furthermore, intelligent testing uncovers robustness failures that could never be 
discovered using only generic testing (as described in the example of the comp utility). 

The desire to build fault tolerant computer systems using commercial software 
necessitates better testing of software components. This involves the testing of both 
existing components, and of the system as a whole. The experiment conducted indicates 
that automated robustness testing using generic testing techniques can yield impressive 
results, but that mission critical applications will require significantly more intelligent 
testing. 
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2.2 NetHose - A Tool for Testing the Robustness of the Network Stack 

2.2.1. Introduction 

The networking of computers is largely responsible for the revolutionary effect 
computers have had in the workplace and in our lives. Before Microsoft Windows, most 
personal computers running MS-DOS were standalone systems. Today, almost every 
computer system is networked with other computer systems, with the ultimate network 
being the Internet. The software that implements the TCP/IP protocol used by the 
Internet is called the network stack. The network stack software is a critical component in 
the operating system (OS), and by extension, to the national information infrastructure 
(Nil). It is the portion of the OS that processes network packets before and after network 
services receive and send them. Since the internet is becoming more homogenous than 
ever, a flaw in the network stack of one of the dominant platforms can leave a large 
portion of the Nil vulnerable to attack. Thus, in order to assure survivability of the 
critical Nil, we must ensure that the network stack software is robust to anomalous 
conditions or malicious attack. 

In this section of the report, we discuss our approach and describe a tool that tests the 
robustness of the network stack software to anomalous conditions and malicious attack. 
The approach is based on our previous work in testing the robustness of OS software by 
using combinations of valid and invalid input, as described in section 2.1. The key 
distinction, however, is that this section describes the application of these techniques 
towards a tool for generating anomalous network packets in order to test the robustness of 
OS networking software. 

The importance of this work is in developing structured approaches to testing critical 
portions of the software that composes the NIL In addition, a structured approach to 
testing enables scientific study of the robustness of the platform. One of the key problems 
in developing a survivable Nil is the robustness of a given platform to denial of service 
attacks. Vulnerability to denial of service attacks is the Achilles heel of today's Internet. 
There are an increasingly large number of Denial of Service attacks that are publicly 
available on the Internet, and OS vendors are scrambling to release patches preventing 
known attacks. Fundamental problems in the design of network protocols can leave all 
network implementations vulnerable. However, more pervasive than design flaws, are 
software implementation flaws, or bugs. Flaws in the networking software can leave a 
platform vulnerable to misuse of network services or to malicious attack. The goal of the 
approach developed here is to test the network stack for robustness to these types of 
unusual conditions in order to identify flaws in the platform that leave it vulnerable. The 
testing approach and tool described here applies equally to any software platform that is 
networked, however, results from applying the tool to the Win32 platform are presented 
here. 
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2.2.2. Approach 

One possible approach to examining the network stack for weaknesses would be to 
perform a thorough analysis of the operating system's source code. This is a software 
engineering task that the vendor should perform prior to releasing the system. We are 
interested in determining the robustness of network stacks for COTS software. With the 
notable exception of Linux, most OS vendors choose not to make the source code to their 
operating systems available. As a result, we must use an approach that is source code 
independent. 

Another technique that could be used for network stack analysis is a black-box approach. 
The traditional black-box approach to testing involves generating inputs with respect to 
functional specifications (not source code) and analyzing the output. This technique has 
the advantage of not requiring any operating system source code, and therefore being 
platform independent. The biggest issue with this type of testing will be the generation of 
test data, and the analysis of the results. 

The approach taken here is a black-box testing approach, but rather than generating 
inputs to perform functional testing, we generalize combinations of valid and invalid 
inputs to test robustness. The IEEE Standard Glossary of Software Engineering 
Terminology defines robustness as "the degree to which a system or component can 
function correctly in the presence of invalid inputs or stressful environmental conditions" 
(IEEE Std 610.12.1990). 

Central to this approach is the design of data generator units that can continually produce 
test data according to our robustness testing criteria. The NetHose testing tool provides a 
framework that makes use of data generators to produce an automated network stack 
testing tool. 

It is important to note here that we are not testing the OS to determine how robust it is 
under heavy load conditions. This approach is known as stress testing or load testing, 
and several commercially available tools exist for this purpose. We will concern 
ourselves only with testing how robust the network stack is to anomalous input. 

2.2.3. Network Stack Overview 

To develop our technique for testing the network stack, it is first necessary to garner a 
better understanding of the inner workings of the network stack. Simply put, the network 
stack is the portion of the operating system that makes inter-computer communication 
possible. 

The implementation of the TCP/IP protocol suite in the operating systems is often 
referred to as the network stack. This is because the protocol headers are pushed onto a 
message during sending and then popped off during receiving (demultiplexing). 
Conceptually, most network stacks are loosely based on the 7 layer OSI model, but can 
easily be depicted as having 4 layers (Figure 8). 
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Figure 8. Path of Data through the Network Stack 

When an application wishes to send a message across a network, a stack of 3 headers is 
placed onto that message by the OS. First a transport layer header describes how the data 
should appear to be transmitted from application to application. Then a network layer 
header maps out how the data should travel across the network. Finally, a link layer 
header describes the physical details of interfacing the cable. TCP and UDP are the two 
most common transport level protocols, and IP is the underlying network layer protocol. 

2.2.3.1 Protocol Headers 

16-bit 
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destination port number 

32-bit 
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4-bit 
hdr length 

6-bit 
reserved 
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flags 
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checksum 

16-bit 
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16-bit 
urgent pointer 

Figure 9: The TCP Header 

The TCP protocol provides for a reliable and connection-oriented byte stream service. 
By storing select information in the protocol headers (Figure 9), TCP provides for such 
properties as data integrity and port delivery. For instance, it ensures the integrity of the 
data by computing an end-to-end checksum and then storing it in the header. For packet 
delivery, however, TCP relies on a network level protocol, namely IP. 

29 



16-bit 
source port number 
16-bit 
datagram length 

16-bit 
destination port number 
16-bit 
checksum 

Figure 10: The UDP Header 

The UDP protocol, also a transport layer protocol, provides an unreliable datagram 
service. It has only a few special properties: port delivery, and data integrity. To provide 
these services, UDP stores information in the header (Figure 10). It stores, for instance, a 
destination port number and an end-to-end checksum in the header, however it does not 
provide for re-transmission of lost packets. 
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Figure 11: The IP Header 

The IP protocol is the predominant network protocol. It provides a best-effort packet 
delivery service that is used by all the transport protocols in the TCP/IP suite (see Figure 
11 for a depiction of the IP header). However, there is no guarantee that an IP packet will 
arrive at its destination, or on arrival, be intact. These qualities are provided by higher 
level protocols10. 

2.2.3.2 IP Fragmentation 

The IP protocol makes provisions for the fragmentation and re-assembly of IP packets 
that are deemed too large. IP fragmentation can occur at the source machine or anywhere 
along the route to the destination. It is a process whereby the data segment of an IP 
packet is broken into multiple pieces, each of which receives an IP header. The IP header 
of each fragment contains a fragmentation offset that the destination machine uses to put 
the pieces back together. IP fragmentation is completely transparent to both the source 
and destination transport layer. For instance, consider a single UDP datagram consisting 
of 16 header bytes and 32 data bytes. The contents of the UDP datagram are usually 
placed into a single IP packet and sent. With IP fragmentation, however, a UDP packet 
may be split into several pieces during its journey, and then the pieces are reassembled on 
arrival at their destination. 
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2.2.3.3 Berkeley Raw Sockets 

Berkeley Sockets are the traditional programming interface to the network stack. The 
sockets API allows for the creation of sockets that can be connected, read, and written by 
an application. During the creation of a socket, the application can specify what sort of 
transport service it would like. Sockets, then, represent the interface between the 
application and the transport layer. Each layer below the application layer is then filled 
in by the operating system. 

Should a programmer need to over-ride the operating system and fill in these layers 
himself, he can do this by making use of raw sockets. For each layer that the 
programmer wishes to emulate, additional space is created at the top of the message 
buffer. This space can then be filled with the correct (or incorrect) values that correspond 
to what the OS fills in. For instance, the OS places the source IP address in the IP header. 
By custom crafting the IP field, however, the programmer can place any IP address he 
desires into that field. This is often referred to as IP spoofing, and it is one potentially 
malicious use of raw sockets. Another, more common, use for raw sockets is to simulate 
transport protocols not supported by regular sockets. For instance, a programmer wishing 
to send an ICMP echo request can fill in the ICMP and IP protocol headers by hand in 
order to create the traditional "ping" effect. The link layer, which most often entails the 
addition of an Ethernet header, is added by the OS, and cannot be manipulated with raw 
sockets. 

2.2.4. Data Generators 

As mentioned earlier, the most significant problem of black-box testing is the generation 
of test data. Unlike traditional black-box testing approaches, NetHose generates data in 
order to test the bounds of the software under analysis. The approach uses combinations 
of valid and invalid inputs to test the network stack. The packets that NetHose creates 
will be used to test the network stack's ability to handle anomalous data. 

NetHose uses data generators to produce data to fill each of the fields in the header of a 
packet. The network stack processes the packet headers, not the body of the message. 
As a result we are interested in generating anomalous packet header fields. Each field 
has its own data generator that is capable of producing values specific to that field. The 
values that a data generator produces are a mix of valid and anomalous data. For 
example, the data generator that produces the value to be used in the "header length" field 
will be able to produce the correct value, but is also able to produce values that are 
incorrect. The incorrect values will attempt to test boundary conditions and special 
circumstances. For example, incorrect values that the "header length" field might 
produce include values that are slightly longer or slightly shorter than the actual value, 
the value zero, and the maximum value allowed. 

NetHose attempts to exploit the relationships that exist between certain header fields. To 
capture these relationships, NetHose allows data generators to be built through the use of 
other data generators. For example, if field A is supposed to be less than field B, then a 
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data generator for field A might be built that first calls the data generator for field B, and 
then generates its own data.   The values that data generator A produces are based on the 
relationship that exists between fields A and B. These values test the boundaries of this 
relationship by producing data that violates the relationship in a variety of ways. 

The tests that NetHose executes consist of using data generators together in different 
combinations. Ideally we would execute every combination of each data generator, 
however running this many tests is currently not feasible. What we have done is to group 
together related header fields. We then execute tests that explore all combinations of 
these groups of fields. 

2.2.5. Test Framework 

The primary component in NetHose is the testing module, which runs on the testing 
machine. This module is responsible for reading the configuration file, building the 
appropriate packets, and sending these packets. NetHose also makes use of a small 
module that runs on the machine that is being tested. The function of this module is 
simply to return a "ping" to the machine that is performing the testing. This is used to 
determine whether the machine being tested is still responding. 

The testing module begins by reading from a configuration file. This file contains 
information that describes the tests that are going to be run. First, it contains information 
to describe which protocols are under test. Then it describes which fields in the transport 
header need to be perturbed. For instance, the message size field and the checksum fields 
might be selected for testing. The file then specifies how many fragments the transport 
layer message should be broken into. Finally, for each fragment, fields in the network 
layer header are selected for testing. Fields such as IP version and IP type of service can 
be selected. NetHose parses all of this information and stores it internally. 

Next, NetHose begins to construct the packets that will be used in the test. The data 
generators create the data that fills the packets. NetHose combines the data generators in 
the manner specified in the configuration file. 

Once the packet has been created, it is sent over the network via the raw sockets 
interface. After sending each sequence of packets, NetHose sends a message to the 
machine that is being tested. If the machine is still functioning properly, it will reply to 
this message. When NetHose has detected that a machine is no longer responding, it will 
pause the testing process. At this point NetHose also makes a record of the disruption in 
service. These disruptions are further examined in a more controlled environment. 
Testing resumes when NetHose is once again able to communicate with the target 
machine, usually after the machine has been manually restarted. 

2.2.6. Methodology 

It is hardly feasible to test all possible combinations of bits in even a relatively small 
header such as the UDP header. Admittedly, such a test set would constitute a very 
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thorough measurement of the robustness of a UDP implementation. However, the UDP 
header consists of 4 fields that are 16 bits in size, and 264 is a prohibitively large number 
of packets to send across the network. Furthermore, an overwhelming majority of these 
combinations will fail the same initial sanity checks. For instance, they will fail the 
checksum. If, however, the number of tests per field is limited to a few carefully crafted 
values, the resulting set of packets may serve to approximate the useful set of tests. To 
be feasible then, black-box testing of the network stack requires a carefully limited set of 
tests for each field. 

For protocols that are not stateless, such as TCP, and to a lesser degree, IP, it is not 
necessarily sufficient to test all combinations of a single packet. To fully test the IP 
fragment re-assembly portions of an IP implementation, it is necessary to construct a test 
set that includes multiple IP packets. If you consider that each IP header consists of 12 
fields, and that each field can be tested by 4 carefully crafted values, it still becomes 
necessary to send 412 packets across the network for each fragment. Conducting a test 
that contains two fragments would require 424 packets. This is clearly infeasible for 
testing multiple IP fragments, and it is similarly infeasible for testing multiple packets in 
a TCP session. Thus, black-box testing of the network stack must involve the careful 
selection of fields under test. 

When testing a single packet, we ran a single large test set that we hoped would uncover 
any errors in the stateless aspects of the UDP and IP protocols. Any errors could be 
isolated using progressively smaller test sets. To test the IP re-assembly algorithms, it 
became important to selectively narrow the number of fields under test. This whittling 
down of the test set was accomplished in a few different ways: certain fields of only 
moderate relevance were tested very little and other fields of little or no relevance are left 
unperturbed. If, for instance, we wished to test IP re-assembly with two packets, we 
might only perturb the IP Type Of Service Flags in one of the packets. Furthermore, we 
might refrain from perturbing the IP Version field at all. These methods of reducing the 
test set were employed at the discretion of the tester. 

2.2.7. Testing Setup 

The testing that we conducted was performed on three different platforms: Windows NT 
Service Pack 3, Windows NT Service Pack 4, and Windows 95 OEM Service Release 2. 
Several different machines were used during testing, including a laptop, a 486, a dual 
Pentium, and several other high-end workstations. The pace of packets being sent to the 
machines under test was intentionally slow enough that performance differences in 
machines should not affect the outcome of the tests. 

2.2.8. Description of Robustness Weaknesses Found 

Three types of robustness failures were observed during the testing: kernel exceptions, 
hard freezes, and system slowdown. The slowdown that we observed occurred only 
when testing the Windows 95 operating system. After a large number of tests, it became 
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impossible to load and execute any applications on the Windows 95 system. The system 
returned to normal after being rebooted. 

A kernel exception (colloquially known as the Blue Screen of Death) appeared during 
several tests of NT SP3, and Windows 95. Under Windows 95, the user has the option of 
either rebooting or continuing execution in a corrupted environment. On NT the system 
must be rebooted. 

The test computer sometimes completely froze during a batch of tests. This was the most 
common catastrophic result. After freezing, the test computer no longer responded to the 
mouse, keyboard, or network. The screen would remain frozen in place until the 
computer was manually reset. This type of robustness failure was found on both NT SP3 
and Windows 95. 

2.2.9. Testing Results 

An exhaustive testing of a single UDP/IP packet required the transmission of nearly 
100000 packets. This involved varying all 4 UDP fields and 7 IP fields in one giant set 
of tests. The only robustness failure uncovered during this set of tests was an instance of 
slowdown on Windows 95. Thereafter, we set about testing multiple IP fragments in a 
large number of smaller test sets. The fields varied during this series of test sets were 
chosen heuristically in order to limit the number of tests. This series of tests sometimes 
involved as few as 100 packets or as many as 10,000 packets. The fragmented packet 
tests were much more successful than the single packet tests at uncovering failures, and 
they uncovered several dozen robustness weaknesses in both Windows NT SP3 and 
Windows 95 OSR 2. The failures uncovered included both blue screens and hard freezes. 

2.2.10. Conclusions 

The common thread between all of the test sets that caused failures is that they all 
involved perturbation of the IP fragmentation offset field. This would lead us to 
conclude that for Windows 95 and Windows NT Service Pack 3, insufficient checking 
was done on the fragment offset field. Because none of these same tests uncovered any 
robustness failures in Windows NT Service Pack 4, we can assume that this set of 
robustness failures has been since corrected, and that Windows NT SP4 is robust to 
fragmentation attacks. This makes sense because one of the purposes of SP4 was to 
protect against fragmentation attacks. 

The most significant errors in the UDP and IP implementations lay in the IP. The fact 
that an IP implementation requires some internal state for fragment re-assembly makes 
the IP protocol a good target for NetHose style testing. It is possible then, that 
implementations of a protocol such as TCP will contain similar errors because TCP 
maintains state for a variety of purposes. 
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2.3. The Failure Simulation Tool 

2.3.1 Introduction 

Commercial off-the-shelf (COTS) software is being used increasingly in developing 
mission-critical systems. For the purposes of our research, COTS software is any 
software for which source code is not available. However, in general, off-the-shelf 
software is any software that is not developed in house. The time and expense of 
developing software in house has spurred developers of critical systems in the 
transportation, medical devices, and nuclear industries to adopt COTS software in the 
development of their critical systems. More recently, the Windows 32-bit (Win32) 
platform, which includes Windows 95/NT/2000/CE operating systems, is being used in 
mission critical applications. 

For example, the U.S. Navy requires that its ships migrate to Windows NT workstations 
and servers under the Information Technology in the 21st century (IT-21) directive   . 
While modernizing the fleet's technology base is appropriate, the risks of migrating to 
new platforms are great, particularly in mission-critical systems. One widely-publicized 
early casualty of this directive involved the USS Yorktown, a U.S. Navy Aegis missile 
cruiser. The cruiser suffered a significant software problem in the Windows NT systems 
that control the ship's propulsion system. An application crash resulting from an 
unhandled exception reportedly caused the ship's propulsion system to fail, requiring the 
boat to be towed back to the Norfolk Naval Base shipyard12. 

We believe the migration of critical systems to COTS software and to the Windows 
platform will continue. However, in spite of the headlong rush to adopt COTS software, 
there exists a dearth of research, technology, and tools for determining the impact of 
failures of third-party COTS software on the dependability of the system13. That is, the 
system integrators or maintainers of critical systems have little support to make 
engineering decisions on what kind of impact the failure of a third party software 
component will have on their systems, let alone know how to harden their systems for 
robustness to failures from third party off-the-shelf software. The reality is, no one 
develops any system, soup to nuts, from custom-built software. Instead, an organization 
will run its software (or even purchase the application software) on commercial operating 
systems and use third-party software components to build their applications. In mission- 
critical systems, it is imperative that the impact of the failure of these third-party 
components on the application software be known in advance in order to harden the 
software for robustness. 

In this research topic we develop an approach and technology for artificially forcing 
exceptions and error conditions from third-party COTS software when invoked by the 
software application under study. The goal in developing this technology is to support 
testing of critical applications under unusual, but known, failure conditions in an 
application's environment. In particular, we simulate the failure of operating system 
functions; however, the approach and tool can be used to simulate the failure of other 
third party software such as imported libraries and software development kits. 
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We have focused on the Win32 platform because we believe this to be the platform to 
which most critical applications are migrating, and it is the platform for which the least 
amount of research on dependability assessment has been performed, in spite of its 
growing adoption. While the general approach developed here is platform independent, 
the technology we have built and the implementation details of the approach are specific 
to the Win32 platform. 

The approach is briefly summarized here, then developed in Section 2.3.4. Because we 
are working in the domain of COTS software, we do not assume access to program 
source code; instead, we work with executable program binaries. The approach is to 
employ fault injection functions in the interface between the software application under 
study and the operating system (or third party) software functions the application uses. 
The fault injection functions simulate the failure of these resources, specifically by 
throwing exceptions or returning error values from the third-party functions. The 
simulated failures are not arbitrary, but rather based on actual observed failures from OS 
functions determined in our previous study of the Windows NT platform (see6), or based 
on specifications of exceptions and error values that are produced by the function being 
used. In addition, the approach does not work on models of systems, but on actual system 
software itself. Therefore, we are not simulating in the traditional sense, but rather 
forcing certain conditions to occur via fault injection testing that would otherwise be very 
difficult to obtain in traditional testing of the application. The analysis studies the 
behavior of the software application under these stressful conditions and poses the 
questions: is the application robust to this type of OS function failure? does the 
application crash when presented with this exception or error value? or does the 
application handle the anomalous condition gracefully? 

In the remainder of this section, we present some background in robustness testing 
research, provide motivation for why handling errors and exceptions is critical, then 
develop the methodology and tool for testing COTS software under these types of 
stressful conditions. 

2.3.2 Background 

Robustness testing is now being recognized within the dependability research community 
as an important part of dependability assessment. To date, robustness testing has focused 
on different variants of Unix software. In section 2.1.2 we discussed the work performed 
by B.P. Miller2'3 and P. Koopman4'14. 

In this study, we are concerned with testing the robustness of application software — 
specifically mission-critical applications — that run on the Win32 platform. Unlike 
nominal testing approaches (see 1516171819) that focus on function feature testing, we are 
concerned with testing the software application under stressful conditions. Robustness 
testing aims to show the ability, or conversely, the inability, of a program to continue to 
operate under anomalous input conditions. More formally, the IEEE Standard Glossary of 
Software Engineering Terminology states that robustness is "the degree to which a 
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system or component can function correctly in the presence of invalid inputs or stressful 
environmental conditions". 

Testing an application's robustness to unusual or stressful conditions is generally the 
domain of fault injection analysis. To date, fault injection analysis of software has 
generally required access to source code for instrumentation and mutation (see    for an 
overview of software fault injection). In addition, fault injection analysis to date has been 
performed on Unix-based systems. We seek to develop technologies that will work on 
COTS-based systems and for the Win32 platform. 

To define the problem domain of this work better: an application is robust when it does 
not hang, crash, or disrupt the system in the presence of anomalous or invalid inputs, or 
stressful environmental conditions. Applications can be vulnerable to non-robust 
behavior from the operating system. For example, if an OS function throws an 
unspecified exception, then an application will have little chance of recovering, unless it 
is designed specifically to handle unspecified exceptions. As a result, application 
robustness is compromised by non-robust OS behavior. 

In our previous studies of the Windows NT platform, we analyzed the robustness of 
Windows NT OS functions to unexpected or anomalous inputs5'6. We developed test 
harnesses and test data generators for testing OS functions with combinations of valid 
and anomalous inputs in three core Dynamically Linked Libraries (DLLs) of the Win32 
Application Programming Interface (API): USER32.DLL, KERNEL32.DLL, and 
GDI32.DLL. Results from these studies show non-robust behavior from a large 
percentage of tested DLL functions. This information is particularly relevant to 
application developers that use these functions. That is, unless application developers are 
building in robustness to handle exceptions thrown by these functions, their applications 
may crash if they use these functions in unexpected ways. 

We know from our testing of the Win32 platform that the OS functions can throw 
exceptions and return error values when presented with unusual or ill-formed input. In 
fact, we know exactly which exceptions and error codes a given OS function will return 
based on function specifications and our previous experimentation. However, even 
though this anomalous behavior from the OS is possible (as demonstrated), it is actually 
unusual during the normal course of events. That is, during normal operation, the OS will 
rarely behave in this way. Using nominal testing approaches to test the application might 
take an extremely long time (and a great many test cases) before the OS exhibits this kind 
of behavior. Thus, testing the robustness of the application to stressful environmental 
conditions is very difficult using nominal testing approaches. 

However, using fault injection, we force these unusual conditions from the OS or from 
other third-party software to occur. Rather than randomly selecting state values to inject, 
we inject known exception and error conditions. This approach then forces these rare 
events that can occur to occur. Thus, this approach enables testing of applications to rare, 
but real failure modes in the system. The approach does not completely address the 
problem of covering all failure modes (especially unknown ones), but it does exploit the 
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fact that third-party software does fail in known ways, even if infrequently. At a 
minimum, a mission-critical application must account   for these known failure modes 
from third-party software. However, many applications never do, because software 
designers are mostly concerned about the application they are developing and assume the 
rest of the environment works as advertised. The approach and tool developed here tests 
the validity ofthat assumption by forcing anomalous conditions to occur. 

It is important to note that we are not necessarily identifying program bugs in the 
application, but rather we are assessing the ability of the application to handle stressful 
environmental conditions from third-party software. So, this approach is an off-nominal 
testing approach that is not a substitute for traditional testing and fault removal 
techniques. In fact, the approach tests the application's error and exception handling 
mechanisms — the safety net for any application. If the application does not account for 
these types of unusual conditions, chances are that it will fail. 

2.3.3 Errors and Exceptions 

Error and exception handling are critical functions in any application. In fact, error and 
exception handling make up a significant percentage of the code written in today's 
applications. However, error and exception handling are rarely tested because: (1) 
programmers tend to assume well-behaved functionality from the environment, and (2) it 
is difficult to create these kinds of anomalous behaviors using nominal testing techniques. 

In 21, Howell argues that error handling is one of the most crucial, but most often 
overlooked aspect of critical system design and analysis. For example, Howell cites four 
examples of the criticality of error handling21: 

• an analysis of software defects by Hewlett-Packard's Scientific Instruments 
Division determined that error checking code was the third most frequent cause of 
defects in their software 

• in a case study of a fault-tolerant electronic switching system, it was found that 2 
out of 3 system failures were due to problems in the error handling code 

• many of the safety-critical failures found in the final checks of the space shuttle 
avionics system were found to be associated with the exception handling and 
redundancy management software 

• problems with the use of Ada exceptions were a key part of the loss of the first 
Ariane-5 rocket 

Errors and exceptions are often used by vendors of third-party software components to 
signal when a resource request has failed or when a resource is being improperly used. 
For example, exceptions may be thrown when invalid parameters are sent to a function 
call, or when the requesting software does not have the appropriate permission to request 
the resource. 

Error codes are returned by a function call when an error occurs during the execution of 
the function. For example, if a memory allocation function is unable to allocate memory, 
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it may return an invalid pointer. Error codes are graceful exits from a function that also 
allow a programmer to debug the source of the problem. Exceptions can be thrown for 
similar reasons, but more often, exceptions are thrown for more severe problems such as 
hardware failures or for cases when it is not clear why a resource request failed. For 
example, an exception returned by a function call may have actually originated from 
another function that was called by the requested function. If an exception is not handled 
by one function, it is passed up the function call chain repeatedly until either some 
function handles the exception or the application crashes. 

In using third-party software, the application developer must be aware of what exceptions 
can be thrown by the third-party function. Third-party functions can be embedded in 
libraries such as the    C run-time library, software development kits, commercial 
software APIs, or as part of the core operating system. In most cases, the source code to 
the third-party function is not available, but header files and API specifications are. The 
function API, header files, or documentation should declare what exceptions, if any, can 
be thrown by the third-party function (and under what circumstances). If the application 
developer does not write exception handlers for these specified cases, then the robustness 
or survivability of the application is placed at risk if an exception is thrown in practice. 

2.3.4 Wrapping Win32 COTS Software for Failure Simulation 

In order to assess the robustness of COTS-based systems, we instrument the interfaces 
between the software application and the operating system with a software wrapper. The 
wrapper simulates the effect of failing system resources, such as memory allocation 
errors, network failures, file input/output (I/O) problems, as well as the range of 
exceptions that can be thrown by OS functions when improperly used. The analysis tests 
the robustness of the application to anomalous and stressful environment conditions. An 
application is considered robust when it does not hang, crash, or disrupt the system in the 
presence of anomalous or invalid inputs, or stressful environmental conditions. 

From our previous studies of the Windows NT platform, we found a large percentage of 
OS functions in the three core DLLs of the Win32 API that threw exceptions when 
presented anomalous input. If these functions are used similarly by an application, then 
the application must be prepared to handle these exceptions, specified or not. Because 
testing the application via nominal testing approaches is unlikely to trigger these 
anomalous OS conditions, we need some alternative method to test the robustness of 
these applications to OS anomalies without requiring access to source code. To address 
this shortcoming in the state-of-the-art, we have developed the Failure Simulation Tool 
(FST) for Windows NT. 

The approach that FST employs is to artificially inject an error or exception thrown by an 
OS function and determine if the application is robust to this type of unusual condition. 
FST instruments the interface between the application executable and the DLL functions 
it imports such that all interactions between the application and the operating system can 
be captured and manipulated. 
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Figure 12: Wrapping Win32 Executable Programs 

Figure 12 illustrates how program executables are wrapped. The application's Import 
Address Table (IAT), which is used to look up the address of imported DLL functions, is 
modified for functions that are wrapped to point to the wrapper DLL. For instance, in 
Figure, functions SI and S3 are wrapped by modifying the I AT of the application. When 
functions SI and S3 are called by the application, the wrapper DLL is called instead. The 
wrapper DLL, in turn, executes, providing the ability to throw an exception or return an 
error code to the calling application. In addition, as the figure shows, we also have the 
ability to record usage profiles of function calls and the ability to execute assertions. 

There are several ways in which the wrapper can be used. First, the wrapper can be used 
as a pass-through recorder in which the function call is unchanged, but the function call 
and its parameters are recorded. This information can be useful in other problem domains 
such as for performance monitoring and for sandboxing programs. Second, the wrapper 
can be used to call alternative functions instead of the one requested. This approach can 
be used to customize COTS software for one's own purposes. For our purposes, we are 
interested in returning error codes and exceptions for specified function calls. Thus, we 
develop custom failure functions for each function we are interested in failing. 

Three options for failing function calls are: (1) replace calling parameters with invalid 
parameters that are known to cause exceptions or error codes, (2) calling the function 
with the original parameters that are passed by the application, then replacing the 
returned result with an exception or error code, or (3) intercept the function call with the 
wrapper as before, but rather than calling the requested function, just returning the 
exception or error code. Option 3 is attractive in its simplicity. However, options (1) and 
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(2) are attractive for maintaining consistent system state. In some cases, it is desirable to 
require the requested function to execute with invalid parameters to ensure that side 
effects from failing function calls are properly executed. Option (1) accounts for this 
case. Using the information from our previous studies of the Win32 API6, Option (1) can 
be implemented by using specifically those input parameters that resulted in OS function 
exceptions. Alternatively, specifications for which parameters are invalid when using a 
function (such as one might find in pre-condition assertions) can be used for causing the 
failure of the function in using Option (1). Option (2) is less rigorous about handling side 
effects from failing function calls, but will ensure side effects from normal function calls 
are properly executed. If, however, side effects from calling functions are not a concern, 
i.e., if the analyst is strictly concerned about how well the application handles exceptions 
or error codes returned from a function call, then Option 3 is sufficient. 

The FST modifies the executable program's IAT such that the address of imported DLL 
functions is replaced with the address to our wrapper functions. This modification occurs 
in memory rather than on disk, so the program is not changed permanently. The wrapper 
then makes the call to the intended OS function either with the program's data or with 
erroneous data. On the return from the OS function, the wrapper has the option to return 
the values unmodified, to return erroneous values, or to throw exceptions. We use this 
capability to throw exceptions from functions in the OS (which we found to be non- 
robust in our earlier studies) called by the program under analysis. 

After instrumenting all of the relevant Import Address Table entries, the FST performs a 
search across the code segment of the module for call sites to the wrapped functions. A 
call site is identified as a call instruction followed by a one-word pointer into the IAT. 
This call site information is used for two purposes. First, it gives the user a sense of how 
many call sites there are for a particular function. Second, it allows the FST to tally the 
number of calls on per site basis instead of on a per function basis. 

Finally, the FST tries to match call sites with linked or external debug information. For 
instance, if the FST has located a call to HeapAlloc at a specific location in memory, it 
attempts to determine the corresponding line of source. Though debugging information is 
not necessarily distributed with an application, it can be a great help to a tester on those 
occasions when it is present. Because of the difficulties involved with juggling the many 
formats in which debugging information can be distributed, the FST makes makes use of 
the Windows NT library ImageHlp.DLL which helps to abstract the details of the debug 
information format. 

The FST is also able to intercept dynamic calls to exported functions. The FST provides a 
special wrapper for the KERNEL32.DLL function GetProcAddress, a function that can 
be used to retrieve the address of a function at run-time. For functions that the FST would 
like to wrap, the special GetProcAddress wrapper will return the address of a wrapper 
function instead of the correct function. 

41 



2.3.5 Using the Failure Simulation Tool 

The prototype Failure Simulation Tool provides an interface that helps to simplify the 
testing of COTS software. There are three primary components to the Failure Simulation 
Tool: the Graphical User Interface (GUI), the configuration file, and the function wrapper 
DLLs. 

A function wrapper DLL contains the wrappers that will be called in place of the 
functions that the user chooses to wrap. These wrappers are responsible for simulating 
the failure of a particular function. The FST includes a variety of wrappers for 
commonly used functions. Additional wrappers can be developed by a user and used by 
the Failure Simulation Tool. 

The configuration file is used to specify the DLL functions that are going to be wrapped, 
and the function that is going to be doing the wrapping. The configuration file is also 
used to break the functions into groups that are displayed by the tree control in the GUI. 
Here is an example of the configuration file. 

PAGE: Memory 
KERNEL32:HeapAlloc:WRAPDLL:WrapHeapAlloc 
KERNEL32:LocalAlloc:WRAPDLL:WrapLocalAlloc 

This configuration file specifies that there should be a group named "Memory," and that 
there will be two functions in that group. The first function to wrap is HeapAlloc, located 
in KERNEL32.DLL, and it should be wrapped using the function WrapHeapAlloc, found 
in WRAPDLL.DLL. The second function is specified in the same manner. 
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Figure 13: The Failure Simulation Tool GUI 

Figure 13 shows the graphic interface to the failure simulation tool that allows selective 
failing of OS resources. The window in the upper left is the Execution Manager. This 
window is used to select an application for testing, to execute and terminate that 
application, and to access the other components of the FST. The largest window in 
Figure 13 is the interface that allows the user to control which functions are currently 
being wrapped, and what the behavior of those wrappers should be. The window titled 
"Log File Viewer" maintains a time-stamped listing of all of the function calls that have 
been made. The small window in the foreground is an example of a wrapper that allows 
the user to select whether a function should fail or not on a case-by-case basis. In the 
upper right of this figure is the application being tested - in this case the Notepad.exe 
application. For a more detailed description of how to use the Failure Simulation Tool, 
please see the documentation supplied as part of the System User's Manual. 

In its current version, the FST is used to interactively fail system resources during 
execution. The dynamic binding to functions allows the tool to fail or succeed calls to OS 
functions on the fly in real time. The FST can be used to wrap any Win32 application 
(mission critical or not) in order to interactively fail system resources and to determine 
the impact of this failure. The performance overhead of the wrapping has not been 
measured, however, no visible degradation in performance of the application software 
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has been observed. The tool is to be used for off-line analysis, however, in order to 
determine the effect of system failures prior to deployment. Thus, performance overhead 
in the analysis is not a large concern, unless it were to introduce unacceptable delays in 
testing. 

2.3.6 Conclusions 

This section on the Failure Simulation Tool provides an approach and tool for assessing 
the robustness of Win32 applications in the face of operating system anomalies. Two 
factors have motivated this work: first, more and more critical systems are being 
employed on the Win32 platforms such as Windows NT/95/CE/2000; second, the 
error/exception handling routines of software applications are rarely tested, but form the 
critical safety net for software applications. In addition, because most COTS software 
(such as third-party libraries or OS software) rarely provides access to source code, we 
constrain our approach to analyzing software in executable format. 

The Win32 Failure Simulation Tool was developed to allow interactive failing of OS 
resources during testing. The tool allows the analyst to observe the effect of errors or 
exceptions returned from the OS on the application under analysis. If the program fails to 
handle exceptions thrown by an OS function it will usually crash. 

In the example of the USS Yorktown, the approach described herein can be used to wrap 
the ship's propulsion system software in order to assess how robust it is to exceptions 
thrown by the OS. For instance, when a divide-by-zero exception is thrown, the analysis 
would show that the propulsion system will crash. This information can then be used to 
prevent such an error from occuring or to handle the divide-by-zero exception gracefully. 
The most pressing question now for this smart ship is what other exceptions is the ship's 
propulsion system and other critical systems non-robust to? 

Currently, a limitation of the tool is its coarse-grained ability to monitor the effects of the 
fault injection on the target application. Our measure for robustness is crude: an 
application should not hang, crash, or disrupt the system in the presence of the failure 
conditions we force. However, it is possible that the third party failures we introduce 
slowly corrupt the program state (including memory and program registers) that remain 
latent until a later period after the testing has ceased. It is also possible that while the 
failure does not crash the program it could simply cause the incorrect execution of the 
program's functions. Neither of these cases is analyzed by our tool. To address the former 
problem, an extensive testing suite would be necessary to gain confidence that even after 
the failure was caused, the program remains robust. To address the latter problem, an 
oracle of correct behavior is necessary and a regression test suite would be required after 
the failure was forced in order to determine correctness of the program. In both of these 
cases, our tool would falsely label the program as robust to the failure of the third-party 
component, when in fact the failure introduced a latent error in the application, or the 
program's output is corrupted without effecting the execution capability of the program. 
Hence, the scope of our monitoring is limited to the ability of the program to continue to 
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execute in the presence of third-party failures. It does not have the ability to judge the 
correctness of the functions computed by the application. 

In summary, the testing approach and prototype presented is of value to consumers, 
integrators, and maintainers of critical systems who require high levels of confidence that 
the software will behave robustly in the face of anomalous system behavior. 

3. Project Summary 

In this project, we examined a key property of secure and dependable systems: 
robustness. Our research focused on developing techniques for analyzing as well as 
increasing the robustness of software due to unknown and anomalous events. The project 
was partitioned into three distinct and complementary threads of robustness research: 
intelligent test case generation, testing of the Win32 network stack for resilience to denial 
of service, and testing application software for robustness to failing operating system 
(OS) resources. 

The Random and Intelligent Data Design Library Environment (RIDDLE) was developed 
to support intelligent black-box testing of operating system and command-line utilities to 
unusual inputs. The work leveraged research in robustness testing of OS utilities 
previously performed on Unix systems, most notably by Barton Miller's research group at 
the University of Wisconsin. Robustness testing of OS utilities has previously found 
vulnerabilities in operating system software to unexpected, random input. Adopting this 
approach for the Win32 platform, we enhanced it further by intelligently combining valid 
input with anomalous input in order to unmask flaws that remain hidden to purely 
random testing. RIDDLE provides a test harness and library for automatically generating 
test data according to both random (generally invalid) and valid parameters. Our studies 
have shown empirically the benefit derived from combining intelligent test data 
generation with random test case generation for the purpose of testing robustness. 

Drawing on the experience of RIDDLE, we developed a tool for testing the robustness of 
the Win32 network stack to anomalous data. The importance of this work is in 
developing structured approaches to testing critical portions of software that comprises 
the National Information Infrastructure (Nil). Since the network stack of the Win32 
platform is a key component of the Nil, this approach is among the first to independently 
and systematically study the robustness of this software under anomalous input 
conditions. Fundamental problems in the design of network protocols such as TCP/IP 
can leave all platforms vulnerable. However, flaws, in the networking software can leave 
a given platform vulnerable to anomalous use of network services, or attack. NetHose is a 
network stack testing utility that is able to test the network stack of Win32 systems to 
unexpected data. This type of analysis effectively tests the operating system's ability to 
handle unusual network packets. The approach uses combinations of valid and invalid 
data in packet header fields in order to test the robustness of the network stack against 
unusual packet headers. Our studies revealed three types of robustness failures: kernel 
exceptions (colloquially known as blue screen of death), hard freezes, and system 
slowdowns. 
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The third thread of research in this project was concerned with testing the robustness of 
Win32 applications under failing OS conditions. From our previous research with 
RIDDLE, we found that the three core libraries that compose the Win32 system more 
often than not throw memory access violation exceptions when presented unusual input. 
Thus, if application developers (particularly for mission-critical applications) do not 
account for these exceptions that the OS throws, then the application is likely to crash. 
The Failure Simulation Tool (FST) provides the ability to test Win32 executables 
(without requiring source code) for robustness to exceptions or errors returned by OS 
functions. FST instruments the interface between an application and the OS DLL in order 
to return errors or exceptions from an OS function. This is a far more efficient approach 
than black-box testing of an application in hopes of generating an OS exception. 
Experiments showed that Microsoft desktop applications had varying levels of non- 
robustness to exceptions and errors returned by OS functions. This type of non-robust 
behavior is typically expected from desktop applications. However, non-robustness to 
errors or exceptions returned from OS functions is typically not acceptable in a mission- 
critical application, such as a ship propulsion system. Thus, FST provides the ability to 
test mission-critical software for robustness to failing OS functions. In the final stage of 
this work, we used the instrumentation layer to provide protective wrappers for 
applications such that an exception can be caught by the wrapper and returned as an error 
when it is known a priori that the error is handled gracefully, while an exception is not. 

In summary, the work performed under this contract has significantly advanced the state- 
of-the-art in a key area or security and dependability of Win32 systems: software 
robustness. We've developed and delivered three distinct technologies for analyzing and 
improving the robustness of Win32 systems under unusual conditions associated either 
with malicious attack or misbehaving operating system functions. 

4.    Statement of Work References 

This section references each of the items in the original statement of work, and identifies 
sections of this report that discuss the completion of each item. 

4.1       The contractor shall accomplish the following: 

4.1.1    Input Generation Language 

RIDDLE, NetHose, and the Grammar Generator each make use of a language for 
specifying the type of input that is produced for testing. The language that RIDDLE 
requires is used in the configuration files to specify the data generators that will be used, 
and is discussed in sections 2.1.3 and 2.1.4.2. The NetHose specification language is 
touched on briefly in this report, and is explored more thoroughly in the System User's 
Documentation. The language used by the grammar generator is based on Backus-Naur 
Form, and is described in section 2.1.4.5.2 of this report. 
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4.1.2 Input Generation and Perturbation Module 

The tools mentioned in the previous paragraph (4.1.1) each implement an input 
generation and perturbation module that takes input in the form of the configuration 
language, and produces output that can be used to test applications. This modules relies 
on the use of data generators, which are described in sections 2.1.3 and 2.2.4. 

4.1.3 Security Assertion Language 

The security assertion language used by the testing utilities that we've developed has 
been built into the tools themselves. We did not have the need to define a very complex 
SAL for the type of testing that we performed. The data that we gathered was fairly 
coarse-grained, and we were able to build the necessary checks into the security 
watchdog module (described in the following paragraph), without the need for a separate 
security assertion languge. 

4.1.4 Security Watchdog Module 

RIDDLE implements a security watchdog that is capable of detecting how an application 
or function terminates (section 2.1.4.2). This watchdog is capable of differentiating 
between the normal termination of an application or function, and termination that has 
resulted due to an error or robustness violation. 

The security watchdog used by NetHose is used to determine the status of the remote 
machine being tested. The watchdog process periodically checks to make sure that the 
network stack of the machine under test is still operating normally (see section 2.2.5). 

4.1.5 Execution Manager 

The execution manager used by RIDDLE and NetHose (see sections 2.1.4.2 and 2.2.5) 
combines the input generation and perturbation module with the security watchdog 
module to provide fully automated collection and analysis of data. The execution 
manager serves as the core component of these two utilities. 

4.1.6 COTS Experimentation 

Section 2.1.4.3.3 describes the results of testing the Win32 API with RIDDLE. Section 
2.1.4.4.3 describes the results of testing native Microsoft command-line utilities and 
ported Cygnus GNU utilities with RIDDLE. The grammar generator was used to test 
both command line utilities (section 2.1.4.5.3) and a variety of web browsers and FTP 
servers (section 2.1.4.5.4). 

NetHose was used to test the network stack of both the Windows NT and Windows 95 
operating systems (section 2.2.7). 
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4.1.7 Deliver and demonstrate the CVA prototype system at RL /1WT 

The time and date for this meeting has not yet been determined. 

4.1.8 Reports and Documentation 

The reports and documentation produced for this product satisfy the requirements as 
specified in the contract. 

4.1.9 Software 

All software developed under this contract will be delivered to the government according 
to SOW item 4.1.9 along with this report. 
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